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Abstract - This study aimed to develop a predictive model for diabetes risk using a combination of demographic, examination, 

diet, and laboratory data. The dataset was processed through ETL (Extract, Transform, Load) and EDA (Exploratory Data 

Analysis) to identify potential correlations. A logistic regression model was built and evaluated using various metrics, achieving 

an accuracy of approximately 93%. The results indicate that the model can accurately predict diabetes risk, making it a valuable 

tool for healthcare professionals. The study demonstrates a comprehensive approach to building a predictive model for diabetes 

risk using a multidimensional dataset with potential applications in healthcare. 

Keywords - Diabetes prediction, Exploratory data analysis, Healthcare data analysis, Logistic regression, Machine learning, 

Monte Carlo simulation.

1. Introduction 
The National Center for Health Statistics (NCHS) is a part 

of the Centers for Disease Control and Prevention (CDC) and 

responsible for producing vital health statistics for the United 

States. One of the NCHS’s most significant programs is the 

National Health and Nutrition Examination Survey 

(NHANES), a program of studies designed to assess the health 

and nutritional status of adults and children in the United 

States. The NHANES program began in the early 1960s as a 

series of surveys focusing on different population groups or 

health topics. In 1999, the survey became a continuous 

program with a changing focus on various health and nutrition 

measurements to meet emerging needs. Since then, it annually 

examines a nationally representative sample of about 5,000 

people nationwide. The NHANES is a unique survey 

combining interviews and physical examinations. The 

interviews include demographic, socioeconomic, dietary, and 

health-related questions.  

The examination components consist of medical, dental, 

and physiological measurements and laboratory tests 

administered by highly trained medical personnel. Diabetes is 

a serious health condition that affects how the body 

metabolizes food, resulting in high blood sugar levels. 

According to the CDC, between 2013 and 2016, 12% of adults 

in the United States had diabetes, with the estimated 

percentage of adults diagnosed with diabetes being 9.4% and 

the estimated percentage of adults with undiagnosed diabetes 

being 2.6%. Unmanaged diabetes can lead to serious health 

problems like heart disease, vision loss, and kidney disease.  

A predictive model for diabetes diagnosis is needed to 

help patients at risk of developing diabetes implement lifestyle 

changes that prevent diabetes or at least make living with 

diabetes easier, working against more harmful medical issues, 

like heart or kidney disease. Prior studies in this field focus on 

creating models with the given data without giving necessary 

attention to data sampling, yielding a model sensitive to the 

training data. A logistic regression model was developed to 

predict the risk of developing diabetes using demographic, 

examination, diet, and laboratory data from the NHANES 

program. With the introduction of bootstrap and Monte Carlo 

simulation methodologies, reliable prediction interval 

estimates and the stability of the predictions under diverse 

scenarios are ensured. This model was developed using a 

dataset of approximately 5,000 individuals and was found to 

have a high accuracy in predicting the risk of developing 

diabetes, with an accuracy of roughly 94%.  

The model considers various demographic, examination, 

diet, and laboratory data, providing comprehensive 

information on the factors contributing to the risk of 

developing diabetes. Creating a successful predictive model 

for diabetes diagnosis will help patients at risk of developing 

diabetes implement lifestyle changes that prevent diabetes or 

at least make living with diabetes easier, working against more 

harmful medical issues, like heart or kidney disease. By 

developing a predictive model, healthcare providers can 

identify individuals at risk of developing diabetes and provide 

targeted interventions and preventative care, reducing the 

incidence and prevalence of the diabetic condition. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Literature Review 
Diabetes is a complex and multifactorial health risk that 

affects millions of people worldwide. Predicting diabetes risk 

has been an active area of research in recent years. Diabetes 

prediction has been an active area of research in recent years, 

focusing on developing accurate and reliable early detection 

and prevention models. The literature on diabetes prediction 

is extensive and diverse, with various approaches and methods 

employed to identify individuals at risk of developing the 

disease.For diabetes risk predictions, traditional approaches 

mainly relied on statistical models, such as logistic regression, 

to identify risk factors and predict these risk outcomes due to 

its simplicity, interpretability, and ability to provide 

probabilistic outputs. For example, studies such as Sisodia and 

Sisodia [1] employed logistic regression on the Pima Indians 

Diabetes Dataset (PIDD) to predict diabetes risk, 

demonstrating its effectiveness in classifying outcomes based 

on clinical and demographic features.  

Exploratory Data Analysis (EDA) and data preprocessing 

are vital steps in ensuring the quality and relevance of features 

used for modeling. The Extract, Transform, Load (ETL) 

process is often employed to handle complex datasets by 

integrating structured data (e.g., lab results) and unstructured 

data (e.g., physician notes) [2]. Prior studies have mostly 

worked on modeling, with a little focus on performing ETL 

and EDA on diverse data. Using diverse data allows for 

analyzing the data from a wider angle and increases the 

possibility of getting a more practical model. Both ETL and 

EDA work together to ensure that data is clean, consistent, and 

ready for meaningful insights by first exploring and 

understanding its patterns, then systematically integrating and 

transforming it from various sources into a usable format for 

analysis; essentially, EDA helps in discovering valuable 

information within the given data, while ETL prepares the data 

to be analyzed effectively, leading to more accurate and 

reliable results for decision-making. Prior studies have shown 

steps to perform EDAs on the type-2 diabetes dataset and with 

a smaller set of factors [21,22].   

It is found that the bootstrap estimates and Monte Carlo 

simulations are advanced statistical methods that have been 

applied sparingly in diabetes prediction models. Bootstrap 

methods, as described by Efron and Tibshirani [10], involve 

resampling data with replacement to provide more robust 

confidence intervals and evaluate the variability of model 

parameters. Similarly, Monte Carlo simulations offer a 

systematic way to evaluate parameter distributions and assess 

model stability under different assumptions [3]. These 

techniques enhance model reliability, particularly in clinical 

contexts where decisions depend on robust statistical 

evidence. The concept of learning curves is commonly used in 

machine learning work to understand the relationship between 

model performance and training data. However, this concept 

is underutilized in diabetes prediction studies. Utilization of 

learning curves helps diagnose underfitting and overfitting 

issues in a model, providing critical insights into model 

generalizability and data sufficiency [11]. Their application to 

diabetes prediction offers an opportunity to optimize resource 

allocation for data collection and model training. 

2.1. Novelty and Comparison with Existing Research 

This paper advances the state of research in diabetes 

prediction using a few different methodologies. The prior 

studies focus more on the modeling without extensive use of 

the data sampling methods. The results, therefore, carry the 

risk of being sensitive to the trained dataset. While logistic 

regression has been extensively studied, this work extends its 

utility by incorporating bootstrap methods that help in 

estimating the variability and reliability of model coefficients, 

errors, etc., without relying on strong assumptions about the 

underlying data distribution that results in achieving more 

reliable interval estimates for predictions which then enhances 

the model’s interpretability and trustworthiness in clinical 

applications. Furthermore, using Monte Carlo simulations 

adds a layer of robustness by simulating parameter variations 

to evaluate the stability of the predictions under diverse 

scenarios by generating multiple possible outcomes based on 

random sampling.  

This technique ensures that the generated model is not 

sensitive to any specific data and, therefore, becomes 

dependable across different population subsets, a critical 

aspect of real-world healthcare systems [3]. The paper’s ETL 

pipeline and detailed EDA on diverse data ensure the high 

quality and relevance of input features, laying a solid 

foundation for modeling. This study greatly uses the concept 

of learning curves by examining the influence of training data 

size on model performance. Gradual examination of the 

effects of the varying data size on model accuracy, this study 

provides valuable insights into the optimal data requirements 

needed to overcome underfitting and overfitting issues. 

Together, these elements contribute to developing a robust and 

reliable predictive model, advancing the applicability of 

machine learning and statistical methods in diabetes risk 

prediction. 

3. Exploratory Data Analysis (EDA) 
3.1. Dataset 

The dataset obtained from Kaggle is the National Health 

and Nutrition Examination Survey (NHANES) dataset, a 

comprehensive program of studies designed to assess the 

health and nutritional status of adults and children in the 

United States. Conducted by the National Center for Health 

Statistics (NCHS), a part of the Centers for Disease Control 

and Prevention (CDC), NHANES combines interviews and 

physical examinations to provide a nationally representative 

sample of approximately 5,000 persons each year. The 

survey's continuous program, initiated in 1999, focuses on 

various health and nutrition measurements to meet emerging 

needs, examining a sample of individuals from 15 counties 

nationwide. The dataset includes demographic, 
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socioeconomic, dietary, and health-related questions, medical, 

dental, and physiological measurements, and laboratory tests 

trained medical personnel to administer. The 2013-2014 

NHANES dataset contains the following components: 

3.1.1. Demographics Dataset 

This dataset contains columns such as age, sex, race, 

ethnicity, and socioeconomic status. 

3.1.2. Examinations Dataset 

The examination dataset contains variables related to 

physical examinations, including: 

• Blood pressure 

• Body measures (e.g. height, weight) 

• Muscle strength (grip test) 

• Oral health (dentition) 

• Taste and smell 

• More (see link for complete list) 

• Dietary data: contains variables related to dietary intake, 

including: 

• Total nutrient intake 

• First-day dietary data 

• Food security 

3.1.3. Laboratory Dataset  

This dataset contains variables related to laboratory tests, 

including: 

• Albumin and creatinine levels (urine) 

• Apolipoprotein B 

• Blood lead, cadmium, total mercury, selenium, and 

manganese levels 

• Blood mercury levels (inorganic, ethyl, and methyl) 

• Cholesterol levels (HDL, LDL, triglycerides, total) 

3.1.4. Medication Dataset  

The medication dataset contains prescription medication 

data.  

3.1.5. Questionnaire Dataset 

 This dataset contains variables related to health and 

lifestyle, including: 

• Acculturation 

• Alcohol use 

• Blood pressure and cholesterol levels 

• Cardiovascular health 

• Consumer behavior 

• Current health status 

• Dermatology 

• And for more information (see link for complete list), 

3.2. Causal Loop Diagrams 

Causal loop diagram is a valuable tool in data analysis, 

allowing researchers to visualize and analyze the complex 

relationships between various factors contributing to the 

development and progression of the diabetic condition. By 

mapping out the causal links between glucose levels, insulin 

levels, and insulin sensitivity, it helped to identify the 

underlying causes of diabetes and develop targeted 

interventions to address them. The benefits of causal loop 

diagrams in this study are improved understanding of the 

complex relationships between variables, better prediction of 

the likelihood of developing diabetes, identification of 

potential targets for treatment, evaluation of the effectiveness 

of interventions, and identification of potential confounding 

variables and mediators. 
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Fig. 1 Causal loop diagram from demographic data 

Diabetic
Weight +

Height

BMI

Diastolic BP

Systolic BP

Waist

+

+

+

+
+

 
Fig. 2 Causal loop diagram from examination data 

DiabeticPotassium +

Monosaturated 

Fats

Calories

Sodium

Saturated 

Fats

+

+

+

+

Systolic BP

+

 
Fig. 3 Causal loop diagram from diet data 
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Fig. 4 Causal loop diagram from lab data 

 

3.3. Extract, Transform and  Load (ETL) 

The original NHANES dataset consists of hundreds of 

variables related to health, lab results, demographics, and 

socioeconomic status. Since the focus is on studying diabetes, 

not all these variables were considered necessary. The most 

relevant variables were identified during the ETL process, and 

some demographic and socioeconomic attributes were 

included to explore potential relationships with a diabetic 

diagnosis. Variables with many missing responses, such as 

those related to pregnancy, were excluded.  

The relevant data was extracted from CSV format and 

loaded into several tables in an SQLite database, establishing 

relationships between tables as needed. 

3.4. Descriptive Analysis – Single Variable EDA 

3.4.1. Target Variable:  Diabetic 

Of the participants in the survey, 90.2% have not been 

diagnosed with diabetes, while 9.8% have been diagnosed 

with diabetes. 

 
Fig. 6 Distribution of target variable diabetic 

3.4.2. Calories 
The minimum and maximum calorie intake values are 

117 and 12108 kcal, respectively. The mean calorie intake is 

2108 kcal, while the median is 1930 kcal. Notably, the mean 

is greater than the median, suggesting a right-skewed 
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Asish Pradhan / IJCTT, 72(11), 192-219, 2024 

 

196 

distribution. Further examination of the data reveals that the 

value of 117 kcal is extremely low, which may indicate an 

input error. A visual examination of the box plot (Figure 1) 

reveals outliers above approximately 3980 kcal. The 

histogram above appears right-skewed and bell-shaped, with 

most data points falling between 1500 and 2000 kcal. 

Additionally, a small presence of calorie information beyond 

4000 kcal is observed. 

 
Fig. 7 Distribution of variable calories 

3.4.3. Monounsaturated Fats  

The monounsaturated fats attribute is a numerical 

variable. It represents the total monounsaturated fatty acids 

(gm) consumed the day before the interview. 

Monounsaturated fats are known as "good fats," such as those 

in olive oil and avocados. They are good for cardiac health. 

The recommended daily intake is 16-22 grams. The 

descriptive statistics for the monounsaturated fatty acid intake 

data indicate that the minimum and maximum values are 0 and 

221 grams, respectively. The mean monounsaturated fatty 

acid intake is 28 grams, while the median is 24.6 grams. 

Notably, the mean exceeds the median, suggesting a potential 

right-skewed distribution. Further examination of the data 

reveals that the value of 0 grams may indicate an input error. 
The range is 221.67 grams, i.e. the difference between the max 

and min values. The interquartile range is 19.728 grams, and 

the coefficient of variance (standard deviation over mean in 

percentage) is 63.59%. A visual examination of the box plot 

reveals outliers above approximately 52 grams, which are not 

being ignored. The histogram appears right-skewed and bell-

shaped, with most data points falling between 20 and 30 

grams. Additionally, a small presence of monounsaturated 

fatty acid information beyond 70 grams is seen. Refer 

(Appendix 1) for plots. 

3.4.4.  Potassium  

Potassium represents the amount of Potassium consumed 

in a day. Potassium is a numerical variable measured in mg. 

The recommended intake is 3,500–4,700 mg per day. 

Potassium is integral to a healthy diet because it helps 

normalize cell functionality. The descriptive statistics for the 

potassium data reveal that the minimum and maximum values 

are 110 and 15,876 milligrams, respectively. The mean 

potassium intake is 2,533 milligrams, while the median is 

2,344 milligrams. A right-skewed distribution is expected 

because the mean is greater than the median. Additional 

descriptive statistics include a range of 15,766 milligrams, an 

interquartile range of 1,461 milligrams, and a coefficient of 

variance of 50.27%. The box plot and histogram (Appendix 1) 

reveal outliers above approximately 5,000 milligrams. The 

histogram is right-skewed and bell-shaped, with most data 

points falling between 1,500 and 2,000 milligrams. A small 

presence of potassium data points beyond 5,000 milligrams is 

also observed. 

3.4.5. Saturated Fats 

Attribute Saturated fats is a numerical variable. It 

represents total saturated fatty acids (gm). Unlike mono-

unsaturated fats, saturated fats are associated with heart 

disease.  Medical experts recommend limiting saturated fat 

intake. The saturated fatty acid data exhibits a range of 177.4 

grams, with a minimum value of 0 grams and a maximum 

value of 177.4 grams. The mean intake is 26.09 grams, while 

the median is 22.84 grams. A right-skewed distribution is 

likely because the mean is greater than the median. Further 

descriptive statistics reveal an interquartile range of 19.027 

grams and a coefficient of variance of 63.57%. The box plot 

and histogram (Appendix 1) illustrate outliers above 

approximately 52 grams. The histogram appears right-skewed 

and bell-shaped, with most data points falling between 15 and 

25 grams. A small presence of saturated fatty acid data points 

beyond 60 grams is also observed. 

3.4.6.  Sugar 

Sugar is a numerical variable. It represents the total grams 

of sugar consumed per day (both processed and non-

processed). Processed sugars are hard for the body to 

regulate.  Over consumption has long been correlated with 

health problems such as obesity and diabetes. The sugar data 

exhibits a range of 979.39 grams, with a minimum value of 

0.13 grams and a maximum value of 979.39 grams. The mean 

sugar intake is 110.97 grams, while the median is 95.39 grams. 

A right-skewed distribution is expected if the mean is greater 

than the median. Additional descriptive statistics include an 

interquartile range of 84.05 grams and a coefficient of 

variance of 68.87%. The box plot and histogram (Appendix 1) 

reveal outliers above approximately 220 grams. The 

histogram is right-skewed and bell-shaped, with many data 

points falling between 50 and 60 grams. A small presence of 

sugar data points beyond 70 grams is also observed. 

3.4.7.  Sodium 

Sodium is a numerical variable. Sodium in a participant's 

diet, measured in milligrams (mg). While sodium is important 

for maintaining fluid balance in the body, many Americans 

over consume sodium. The recommended intake is 2,300 mg 
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per day.  Excess sodium can lead to high blood pressure and 

other health problems. The sodium data exhibits a mean of 

3505.167 mg, which exceeds the recommended daily intake. 

The median value of 3169.00 mg also exceeds this 

recommendation. The 1st quartile is 2264.00 mg, while the 3rd 

quartile is 4355.00 mg. The minimum value is 29.00 mg, while 

the maximum value is 21,399.00 mg, resulting in a range of 

21,370.00 mg. The interquartile range is 2,091.00 mg, and the 

coefficient of variance is 53.1%. The box plot and histogram 

(Appendix 1) reveal a few apparent outliers at approximately 

20,000 mg. The histogram appears right-skewed and bell-

shaped, with most data points clustering around 2,500 mg. 

3.4.8. Diastolic Blood Pressure 

Diastolic BP is a numerical variable for diastolic blood 

pressure (measured in mm Hg). Diastolic blood pressure is the 

pressure that is released when the heart fills with blood. A 

normal diastolic blood pressure for an adult is under 80 

mmHg. High blood pressure is a cause for concern as it 

increases the risk of several medical emergencies, such as 

heart attacks and strokes. The diastolic blood pressure (BP) 

data exhibits a mean of 67.54 mm Hg and a median of 68.00 

mm Hg. The first quartile is 60.00 mm Hg, while the 3rd 

quartile is 76.00 mm Hg. The minimum value is 0.00 mm Hg, 

while the maximum value is 120.00 mm Hg, resulting in a 

range of 120 mm Hg. The interquartile range is 16.00 mm Hg, 

and the coefficient of variance is 20.36%. The box plot and 

histogram (Appendix 1) reveal an even distribution of data 

points with no apparent outliers. The histogram appears to be 

bell-shaped, with a peak in data around 65 mm Hg. Notably, a 

single data point at 0.00 mm Hg appears anomalous for a 

diastolic BP value. 

3.4.9. Systolic Blood Pressure 

Systolic BP is a numerical variable for systolic blood 

pressure (measured in mm Hg). Systolic blood pressure is the 

pressure in the heart from contracting. The target systolic BP 

is 120 mmHg.  High blood pressure is a cause for concern as 

it increases the risk of several medical emergencies, such as 

heart attacks and strokes. The systolic blood pressure (BP) 

data exhibits a mean of 119.81 mm Hg and a median of 116.00 

mm Hg. The 1st quartile is 108.00 mm Hg, while the 3rd 

quartile is 128.00 mm Hg. The minimum value is 74.00 mm 

Hg, while the maximum value is 228.00 mm Hg, resulting in 

a range of 154.00 mm Hg. The interquartile range is 20.00 mm 

Hg, and the coefficient of variance is 14.33%. The box plot 

and histogram (Appendix 1) reveal a possible presence of a 

couple of outliers above 200 mm Hg. The box plot shows a 

wider distribution of points above the box, whereas the points 

below the box appear to be tighter and less dispersed. The 

histogram is bell-shaped, with a peak in data around 125 mm 

Hg. 

3.4.10. Abdominal Diameter 

Abdominal diameter is a numerical variable for the 

average sagittal abdominal diameter (measured in cm). 

Studies have investigated the potential of the sagittal 

abdominal diameter as a predictor of incident diabetes, 

suggesting a possible link between this measure and the 

development of the diabetic condition. [18] The abdominal 

diameter data exhibits a mean of 21.75 cm and a median of 

21.30 cm. The 1st quartile is 18.20 cm, while the 3rd quartile 

is 24.70 cm. The minimum value is 11.90 cm, while the 

maximum value is 40.10 cm, resulting in a range of 28.20 cm. 

The interquartile range is 6.50 cm, and the coefficient of 

variance is 21.27%. The box plot and histogram (Appendix 1) 

reveal a possible presence of a couple of outliers at 

approximately 40 cm. The box plot shows a wider distribution 

of points above the box, whereas fewer points are below. The 

histogram appears to be somewhat bell-shaped, with a peak in 

data around 23 cm. 

3.4.11.  BMI 

BMI is a numerical variable. BMI, or Body Mass Index, 

is one indicator of overall health. According to Wikipedia, it 

is calculated as 𝐵𝑀𝐼 =
𝑚𝑎𝑠𝑠

ℎ𝑒𝑖𝑔ℎ𝑡
. A BMI of 25 and over is 

categorized as overweight. Many health problems, including 

diabetes, have been linked to having a BMI that is considered 

overweight.  Note that in recent years, BMI has been criticized 

as an indicator of health since it does not consider body type 

or composition. The body mass index (BMI) data exhibits a 

mean of 27.83 𝑘𝑔/𝑚2and a median of 26.90 𝑘𝑔/𝑚2. The 1st 

quartile is 22.90 𝑘𝑔/𝑚2, while the 3rd quartile is 31.40 

𝑘𝑔/𝑚2. The minimum value is 13.40 𝑘𝑔/𝑚2, while the 

maximum value is 67.50 𝑘𝑔/𝑚2, resulting in a range of 54.10 

𝑘𝑔/𝑚2. The interquartile range is 8.50 𝑘𝑔/𝑚2, and the 

coefficient of variance is 24.44%. The box plot and histogram 

(Appendix 1) reveal a distribution with all points above the 

box, with increasing spread as the BMI values increase. The 

histogram appears to be somewhat bell-shaped, with a peak in 

data around 30 𝑘𝑔/𝑚2. 

3.4.12.  Height 

Height is a numerical variable for the participant's 

standing height (measured in cm). The height data exhibits a 

mean of 167.24 cm and a median of 166.80 cm. The 1st 

quartile is 160.10 cm, while the 3rd quartile is 174.30 cm. The 

minimum value is 136.30 cm, while the maximum value is 

202.60 cm, resulting in a range of 66.30 cm. The interquartile 

range is 14.20 cm, and the coefficient of variance is 5.97%. 

The box plot and histogram (Appendix 1) reveal a distribution 

with most points below the box with a few above. The 

histogram is bell-shaped, consistent with the expected normal 

distribution of height data. 

3.4.13.  Weight 

Weight is a numerical variable for the participant's weight 

(measured in kg). The weight data exhibits a mean of 78.23 kg 

and a median of 75.40 kg. The 1st quartile is 63.10 kg, while 

the 3rd quartile is 90.10 kg. The minimum value is 29.20 kg, 

while the maximum value is 195.40 kg, resulting in a range of 
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166.20 kg. The interquartile range is 27.00 kg, and the 

coefficient of variance is 27.62%. The box plot and histogram 

(Appendix 1) reveal a distribution with a few points below the 

box but most points above the box. The histogram appears 

bell-shaped, with spikes to the left of the curve that may 

indicate outliers. 

3.4.14.  High-Density Lipoprotein (HDL) 

HDL, or high-density lipoprotein, is known as "good 

cholesterol". It is known to improve heart and liver 

functionality. It is measured in mg/dL.  60 mg/dL or higher is 

the desirable amount. High-Density Lipoprotein (HDL) 

cholesterol levels range from 10-173 mg. The mean HDL level 

is 50 mg, close to the median of 52.67 mg. The range of HDL 

levels is 163 mg, indicating significant variation in the data. 

The interquartile range (IQR) is 19 mg, which is smaller than 

the range, suggesting that the data is not excessively skewed. 

The coefficient of variance (COV) is 0.29, indicating that the 

variance is 29% of the mean. The distribution of HDL levels 

is roughly bell-shaped, with a long right skew and several high 

outliers. 

3.4.15.  Cholesterol 

 The cholesterol variable measures the total amount of 

cholesterol in the blood. It is measured in mmol/L. For adults, 

under 200 mmol/L is considered healthy.  High cholesterol is 

associated with heart disease.The mean cholesterol level is 

222 mmol/L, with a minimum value of 0 and a maximum of 

3515 mmol/L. However, the minimum value of 0 is likely an 

error, as, practically, cholesterol levels cannot be zero. The 

range of the cholesterol data is 3515 mmol/L, including 

outliers. The interquartile range (IQR) is 269 mmol/L, and the 

coefficient of variance (COV) is 0.8592. The cholesterol data 

exhibits a heavy upward skew, with most data points falling 

on the lower side of the distribution. The box plot indicates 

that the observation of 3515 mmol/L is a highly high outlier, 

representing an error or an unusual case. 

3.4.16.  Glucose 

 Glucose, or blood sugar, is a vital energy source from 

human food. The glucose variable is measured in millimoles 

per liter (mmol/L). The mean glucose level is 5.59 mmol/L, 

with a minimum value of 2.72 mmol/L and a maximum value 

of 32.03 mmol/L. The standard deviation is 1.976 mmol/L. 

The range is 29.31 mmol/L, indicating significant variability 

in the data. The interquartile range (IQR) is 0.89 mmol/L, 

suggesting that most data points are clustered on the lower side 

of the distribution. The plots confirm that most of the data is 

on the low side, with a widespread in the upper quartile. 

Although there are some outliers, there are no glaringly 

obvious ones. 

3.4.17.  Age 

The first demographic variable is age, representing the 

years a participant has lived. The participants in the study 

range in age from 12 to 80 years.The mean age is 41.39 years, 

with a median age of 40. The range of ages is 68 years, 

indicating a significant amount of variability in the data. The 

interquartile range (IQR) is 35 years, suggesting that most data 

points are clustered around the median. The coefficient of 

variation (COV) is 0.4876, indicating moderate variation in 

the data. 

3.4.18.  Family Income 

Family income represents the annual household income, 

which was categorized into ranges during the data processing 

stage (ETL). The categories were mapped back from integer 

values to string category names. The family income 

measurements are binned at $5,000 and $10,000 intervals. 

Notably, a significant proportion of participants did not 

provide their actual income, and therefore, the income bin was 

estimated based on responses to various questions. This may 

complicate the analysis and regression modeling. 

Interestingly, the group with an income of $100,000 or more 

had the most significant observations. 

3.4.19.  Family Income Poverty Ratio 

The family income poverty level is a ratio of family 

income to the poverty cut-off, with a range of 0-4.99. 

Observations with values greater than 4.99 were recoded as 5, 

resulting in a range of 0-5. The average family income poverty 

ratio is 3.94. The distribution of the variable is roughly 

uniform, with a notable peak at 5, likely due to the recoding 

of values greater than 5 to 5. 

3.4.20.  Gender 

The gender variable captures the self-reported gender of 

the participant, with options being male or female. The survey 

did not include other gender identities, so any such responses 

would not be represented in the data. The gender distribution 

is roughly evenly split, with a slight majority of male 

participants, with 2390 females and 2423 males. 

3.4.21.  Race 

The demographic variable is a categorical variable that 

captures the self-reported demographic background of the 

participant. Due to the limited options available, many 

demographic categories were aggregated into the "other" 

category. Most of the sample consists of individuals from 

diverse backgrounds, comprising approximately 42% of the 

participants. The second largest group is individuals from 

African American backgrounds, followed by other 

demographic categories. 

3.5. Descriptive Analysis - Pairwise EDA 

3.5.1. Diabetic Vs Calories 

The first relationship examined is the association between 

diabetes and calorie consumption. Given the link between 

diabetes and unhealthy lifestyle habits, it was expected that 

individuals with diabetes would tend to consume more 

calories than those without diabetes. However, the data reveals 

a surprising finding: the mean calorie intake for individuals 
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with diabetes is 1871, while the mean for those without 

diabetes is 2134. Notably, both means exceed their respective 

medians, indicating right skewness in both distributions. 

Furthermore, the plots exhibit a normal distribution with right 

skewness, suggesting that the data is concentrated around the 

mean. This finding contradicts the initial hypothesis, 

highlighting the importance of exploring data-driven insights 

rather than relying solely on theoretical expectations. 

 
Fig. 8 Distribution of target variable diabetic against calories 

3.5.2. Diabetic Vs Monounsaturated fats 

Monounsaturated fats are considered "healthy fats" and 

are not expected to be associated with poor health outcomes. 

The mean monounsaturated fat intake for individuals with 

diabetes is 28.436 grams, while for those without diabetes, it 

is 26.48 grams. As in the previous cases, both means exceed 

their respective medians, indicating right skewness in both 

distributions. Furthermore, the plots exhibit a normal 

distribution with right skewness, suggesting that the data is 

concentrated around the mean. Consistent with expectations, 

the data does not show a strong correlation between 

monounsaturated fat intake and diabetes. 

3.5.3. Diabetic Vs Potassium 

The relationship between potassium levels and diabetes is 

of interest, as low levels of potassium have been linked to 

degraded cell performance. Therefore, it was hypothesized 

that individuals with diabetes would have lower potassium 

levels than those without diabetes. The means for potassium 

levels were 2426.9 mg for people with diabetes and 2544 mg 

for non-diabetics, with medians of 2349 mg and 2341 mg, 

respectively. However, a statistical analysis revealed no 

significant difference between the means. The plots for 

diabetics and non-diabetics exhibit a similar distribution, with 

samples concentrated around the mean and a bell-shaped 

distribution with right skewness. This suggests no significant 

difference in potassium levels between individuals with and 

without diabetes. 

3.5.4. Diabetic Vs Saturated Fats 

Saturated fats are known to affect health negatively, and 

it was expected that individuals with diabetes would have 

higher saturated fat intake. However, the data reveals a 

surprising finding: the mean consumption of saturated fats for 

the diabetic group was 23.27 grams, more than 3 grams less 

than the average for the non-diabetic group (26.4 grams), 

which contradicts the initial assumption. Notably, the 

saturated fat intake distribution for diabetics and non-diabetics 

appears to be normal with right skewness, with samples 

concentrated around the mean. 

3.5.5. Diabetic Vs Sugar 

Previous research has established a correlation between 

diets high in sugar and an increased risk of developing 

diabetes. Consequently, it was expected that the diabetic 

survey participants would have higher sugar intakes. 

However, the data reveals a surprising finding: the mean 

amount of sugar consumed per day among people with 

diabetes was 85.4 grams, which is lower than the mean of 

113.74 grams among non-diabetic individuals. This may be 

because the diabetic group is defined as "has been diagnosed 

with diabetes", and therefore, individuals in this group may be 

actively managing their condition by reducing their sugar 

intake. The mean is greater than the median in both cases, 

indicating right skewness in both distributions. Furthermore, 

the plots are normal with right skewness, suggesting that the 

data is concentrated around the mean. 

3.5.6. Diabetic Vs Sodium 

The relationship between sodium intake and diabetes has 

been explored. As diets high in sodium have been linked to 

blood pressure and heart disease, which are common 

comorbidities of diabetes, it was expected that the diabetic 

group would have higher sodium intake. However, the data 

reveals a surprising finding: the mean sodium intake for the 

diabetic group (3328.15 mg) is lower than that of the non-

diabetic group (3524.37 mg). Furthermore, the median sodium 

intake for the diabetics is also lower than that of the non-

diabetics. This goes against the initial prediction. The mean is 

greater than the median in both cases, indicating right 

skewness in both distributions. Additionally, the plots appear 

normal with right skewness, suggesting that the data is 

concentrated around the mean. 

3.5.7. Diabetic Vs Diastolic BP 

The relationship between systolic blood pressure and 

diabetes has been explored. As heart disease is a common 

comorbidity of diabetes, it was expected that the diabetic 

group would have higher systolic blood pressure. However, 

the data reveals a surprising finding: the mean diastolic BP 

level for the diabetic group (68.87 mm Hg) is only slightly 

higher than that of the non-diabetic group (67.39 mm Hg). 

Notably, the mean is close to the median in both cases, 

indicating a symmetrical distribution with no skewness 

expected. Furthermore, the plots appear normal with right 
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skewness, suggesting that the data is concentrated around the 

mean. However, the data point of 0 mm Hg in both groups 

may be an outlier that warrants further investigation. 

3.5.8. Diabetic Vs Systolic BP 

The relationship between systolic blood pressure and 

diabetes has been explored. As heart disease is a common 

comorbidity of diabetes, it was expected that the diabetic 

group would have higher systolic blood pressure. The data 

reveals a finding consistent with this expectation: the mean 

systolic BP level for the diabetic group (129.54 mm Hg) is 

higher than that of the non-diabetic group (118.75 mm Hg).  

Furthermore, the mean is greater than the median for the 

people with diabetes, indicating right skewness in the 

distribution. Conversely, the mean is less than the median for 

the non-diabetics, suggesting the opposite skewness. The 

center of the distribution for people with diabetes is indeed 

higher than that for non-diabetics, as expected. The plots 

appear normal with right skewness, suggesting that the data is 

concentrated around the mean. 

3.5.9. Diabetic Vs Abdominal Diameter 

The relationship between abdominal diameter and 

diabetes has been previously studied, with higher abdominal 

diameter being identified as a potential risk factor for 

developing diabetes. Consistent with this finding, the data 

reveals a positive association between abdominal diameter 

and diabetes. The mean abdominal diameter for the diabetic 

group (25.78) is higher than that for the non-diabetic group 

(21.31). Moreover, the mean is slightly greater than the 

median for the people with diabetes, indicating a slight right 

skewness in the distribution. Conversely, the mean is less than 

the median for the non-diabetics, suggesting the opposite 

skewness. The center of the distribution for people with 

diabetes is indeed higher than that for non-diabetics, as 

expected. The plots appear normal with right skewness, 

suggesting that the data is concentrated around the mean. 

3.5.10. Diabetic Vs BMI 

The relationship between body mass index (BMI) and 

diabetes has been well-established, with unhealthy lifestyles 

and obesity being common risk factors for developing the 

disease. Consistent with this expectation, the data reveals a 

positive association between BMI and diabetes. The mean 

BMI for the diabetic group (31.98 kg/m^2) is higher than that 

for the non-diabetic group (27.38 kg/m^2). Moreover, the 

mean is greater than the median for the people with diabetes, 

indicating a right skewness in the distribution. Conversely, the 

mean is less than the median for the non-diabetics, suggesting 

the opposite skewness. The center of the distribution for 

people with diabetes is indeed higher than that for non-

diabetics, as expected. The plots appear normal with right 

skewness, suggesting that the data is concentrated around the 

mean. Notably, there appear to be some outliers in the diabetic 

distribution with BMIs greater than 60 kg/m^2. 

3.5.11.  Diabetic Vs Height 

As previously observed, height follows a normal 

distribution. There is no established link between height and 

severe health problems. The data reveals that the mean height 

for people with diabetes (167.02 cm) is slightly lower than that 

for non-diabetics (167.27 cm). In the case of diabetics, the 

median and mean are nearly identical, indicating no skewness 

in the distribution. In contrast, the mean is greater than the 

median for non-diabetics, suggesting right skewness in the 

distribution. Notably, there is no significant difference in the 

distributions. The plots appear normal with right skewness, 

suggesting that the data is concentrated around the mean. 

3.5.12.  Diabetic Vs Weight 

While height is necessary in calculating BMI to determine 

whether someone is overweight, it is well-established that 

high weight is a strong indicator of being overweight. 

Therefore, it is reasonable to expect that the diabetic group 

would have a higher weight, given the association between 

weight and the risk of developing diabetes. The data supports 

this expectation, with the mean weight for people with 

diabetes (89.76 kg) being significantly higher than that for 

non-diabetics (76.98 kg). Notably, the weight distribution for 

people with diabetes exhibits left skewness, with the mean 

being less than the median. In contrast, the weight distribution 

for non-diabetics shows a slight right skewness, with the mean 

being slightly greater than the median. The plots appear 

normal with right skewness, suggesting that the data is 

concentrated around the mean. 

3.5.13.  Diabetic Vs HDL 

The relationship between High-Density Lipoprotein 

(HDL) cholesterol and heart disease is well-established, with 

high HDL levels associated with a reduced risk of heart 

disease. As heart disease is a common comorbidity of 

diabetes, it was expected that the diabetic group would have 

higher HDL levels. However, the data reveals a surprising 

finding: the mean HDL level for people with diabetes is 47.64, 

which is lower than the mean for non-diabetics (53). This is 

the opposite of what was expected. Additionally, the standard 

deviation of HDL levels is similar for diabetics and non-

diabetics, both of which have bell-shaped distributions of 

HDL. Notably, the diabetic population has less spread in its 

HDL levels compared to non-diabetics. 

3.5.14.  Diabetic Vs Cholesterol 

The relationship between cholesterol levels and heart 

disease is well-established, with high cholesterol levels being 

associated with an increased risk of heart disease. As heart 

disease is a common comorbidity of diabetes, it was expected 

that the diabetic group would have higher cholesterol levels. 

The data supports this expectation, with the mean cholesterol 

level for diabetics (305) being higher than that for non-

diabetics (292). The distributions of cholesterol levels for 

diabetics and non-diabetics have similar centers, with many 

high outliers. Additionally, both groups have mostly low 



Asish Pradhan / IJCTT, 72(11), 192-219, 2024 

 

201 

cholesterol levels with long skews, indicating a rightward 

skewness. 

3.5.15.  Diabetic Vs Glucose 

Diabetes affects the body's ability to regulate blood sugar 

levels, resulting in high glucose levels in the blood. 

Consequently, it was expected that individuals with diabetes 

would have higher blood sugar levels due to their inability to 

regulate these levels. The data supports this expectation, with 

the average blood glucose level for people with diabetes (8.85) 

being higher than that for non-diabetics (5.233). Notably, the 

maximum blood glucose level for diabetics is 32, 9 units 

higher than the maximum for non-diabetics. The distribution 

of blood glucose levels for people with diabetes is 

characterized by a wider spread of measurements compared to 

non-diabetics, reflecting the impact of diabetes on the body's 

ability to regulate glucose. Furthermore, the diabetic group 

exhibits a long upper tail with several extremely high outliers, 

indicating a greater range of blood glucose levels among 

individuals with diabetes. 

3.5.16.  Diabetic Vs Age 

According to the Centers for Disease Control and 

Prevention (CDC), only a small percentage of youth, 

approximately 0.35%, have diabetes. Therefore, it was 

expected that the age distribution of people with diabetes 

would skew higher, with most individuals being older. The 

data supports this expectation, with the average age of people 

with diabetes being 59 years, significantly higher than the 

average age of non-diabetics (47.68 years). The age 

distribution of people with diabetes exhibits a long lower 

skew, with the bulk of the observations in the older age 

groups. Notably, the cases of juvenile diabetes are outliers, as 

expected. In contrast, the age distribution of non-diabetics is 

more uniform, with a spike in the younger age groups. The 

non-diabetic distribution appears closer to the overall 

distribution shown earlier in this notebook, with a more even 

spread of ages. 

3.5.17.  Diabetic Vs Gender 

There is a slight difference in the prevalence of diabetes 

between men and women, with women having a 9.5% diabetes 

rate and men having a 10% diabetes rate. 

3.5.18.  Diabetic Vs Family Income Ratio 

The relationship between socioeconomic status and 

diabetes prevalence is an important area of investigation. 

Lower-income families may be at a disadvantage in terms of 

accessing healthy foods and health services, which could 

contribute to a higher prevalence of diabetes. Therefore, it was 

expected that individuals with lower family income-to-

poverty ratios would have a higher prevalence of diabetes.The 

data shows that both populations have the same minimum and 

maximum values for the family income-to-poverty ratio (due 

to the poverty ratio being capped at 5). The average value for 

non-diabetics is slightly higher, suggesting that non-diabetics 

may be more likely to have a higher socioeconomic status. The 

distributions of family income-to-poverty ratios appear to be 

approximately equal, except for a slightly higher proportion of 

diabetics in the 0.5-1.5 range and more non-diabetics having a 

family income-to-poverty ratio of 5. This suggests that non-

diabetics are more likely to be wealthier, which may be a 

contributing factor to their lower prevalence of diabetes. 

3.5.19.  Diabetic Vs Race 

The data reveals that the population with the highest 

incidence rate of diabetes is one of the racial/ethnic groups. 

The incidence rates for the remaining groups are all within 1% 

of each other, apart from the "Other" group, which has a 

significantly higher incidence rate. 

3.5.20. Diabetic Vs Income To Poverty Ratio 

Since the family income ratio was capped at 5, it cannot 

be used as a continuous variable in the model. Therefore, a 

binary variable was created to categorize individuals as having 

a family income ratio under or over 5. This approach allows 

us to examine the relationship between socioeconomic status 

and diabetes prevalence. Notably, the data suggests that 

diabetes disproportionately affects individuals with lower 

incomes. Specifically, 7% of those with family income ratios 

over 5 had diabetes, whereas 10.4% of those with income 

ratios under 5 had diabetes. This finding aligns with the initial 

assumption, which is that lower-income individuals may face 

barriers to accessing healthy food and preventative care, 

thereby increasing their risk of developing diabetes. 

3.5.21.  Diabetic Vs Overweight 

The relationship between BMI and diabetes is a well-

established one. For this analysis, being overweight is defined 

as having a BMI greater than 25. Looking at the data, its seen 

that 13.7% of individuals who are overweight have diabetes, 

whereas only 3.45% of non-overweight individuals have 

diabetes. This significant difference suggests a strong 

connection between crossing the BMI threshold and the risk 

of developing diabetes. This may be a valuable predictor of 

diabetes risk, warranting further exploration in future studies. 

3.5.22 Summary 

The exploratory data analysis revealed that many dietary 

variables, such as calorie and sugar intake, did not conform to 

the expected relationships. One possible explanation for this 

unexpected finding is that diabetes patients are more aware of 

their dietary choices and make conscious decisions to maintain 

healthy habits to prevent the disease from progressing. This 

could lead to a reduction in the expected relationships between 

these variables and diabetes.  

In contrast, many health indicators, such as weight, 

abdominal diameter, and systolic blood pressure, followed the 

expected patterns. These findings suggest that these physical 

health metrics are related to the risk of developing diabetes. 

Additionally, the analysis revealed a potential relationship 
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between income level and diabetes diagnosis, which warrants 

further investigation. These results highlight the importance of 

considering behavioral and health-related factors in 

understanding the complex relationships between lifestyle 

variables and diabetes. The correlation matrix analysis 

identified several strong relationships between the attributes, 

particularly after one-hot encoding of the categorical 

variables. 

Notably, the following pairs exhibited correlations 

exceeding 0.8, suggesting potential interaction terms: calories 

and monosaturated fats, calories and saturated fats, 

monosaturated and saturated fats, BMI and abdominal 

diameter, BMI and weight, and weight and abdominal 

diameter. These correlations indicate the presence of complex 

relationships between these variables, which may be 

important to consider in developing a predictive model. 

 
Fig. 9 Correlation matrix 

3.5.23. Calories Vs Monosaturated Fats 

The exploratory data analysis of calorie intake and 

monosaturated fats reveals a strong positive correlation, with 

a Pearson correlation coefficient of 0.84187 and a Spearman 

rank correlation coefficient of 0.83503. The scatter plot shows 

a clear increasing relationship, indicating that monosaturated 

fat intake also tends to increase as calorie intake increases. 

This suggests that individuals who consume more calories 

may also consume more monosaturated fats, potentially 

indicating a common dietary pattern or lifestyle choice. 

Further analysis is needed to understand the underlying 

mechanisms and potential implications for health outcomes. 

3.5.24. Calories Vs Saturated Fats 

It shows a strong positive correlation, with a Pearson 

correlation coefficient of 0.82362 and a Spearman rank 

correlation coefficient of 0.80353. This suggests a significant 

relationship between the two variables, indicating that 



Asish Pradhan / IJCTT, 72(11), 192-219, 2024 

 

203 

saturated fats also tend to increase as calories increase. The 

scatter plot shows a clear increasing relationship, further 

supporting this finding. This correlation is important to 

consider in the context of a healthy diet, as excessive 

consumption of saturated fats has been linked to negative 

health outcomes. 

3.5.25. Monosaturated Fats Vs Saturated Fats 

A strong and significant positive correlation is observed 

between monosaturated and saturated fats. The Pearson 

correlation coefficient of 0.83329 and the Spearman rank 

correlation coefficient of 0.85016 suggest a strong 

relationship between the two variables, indicating that 

saturated fats also tend to increase as monosaturated fats 

increase. The scatter plot reinforces this finding, displaying a 

clear increasing relationship between the two variables. This 

correlation is noteworthy, as monounsaturated and saturated 

fats are types of fatty acids commonly found in various foods, 

and their strong positive relationship may indicate that they 

are often consumed together or are related in some other way. 

 
Fig. 10 Distribution of monosaturated fats against calories 

 
Fig. 11 Distribution of saturated fats against calories 

3.5.26. BMI Vs Abdominal Diameter 

A strong positive correlation exists between BMI and 

abdominal diameter, with a Pearson correlation coefficient of 

0.90483 and a Spearman rank correlation coefficient of 

0.91144. This suggests that as BMI increases, abdominal 

diameter also tends to increase. The scatter plot shows a clear 

and strong relationship between the two variables, indicating 

a high degree of association between them. This correlation is 

not surprising, as BMI measures body fat based on height and 

weight, and abdominal diameter measures central obesity. The 

strong positive correlation between these two variables 

suggests that individuals with higher BMIs are likely to have 

larger abdominal diameters and vice versa. 

3.5.27. BMI Vs Weight 

A strong positive correlation exists between BMI and 

weight, with a Pearson correlation coefficient of 0.89570 and 

a Spearman rank correlation coefficient of 0.88600. This 

suggests that as weight increases, BMI also tends to increase. 

The correlation between these two variables is not surprising, 

as BMI measures body fat based on height and weight, and 

weight is a direct measure of body mass.  

 
Fig. 12 Distribution of monosaturated fats against saturated fats 

 
Fig. 13 Distribution of abdominal diameter against BMI 
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The strong positive correlation between BMI and weight 

suggests that higher-weight individuals will likely have higher 

BMIs and vice versa. 

3.5.28. Weight Vs Abdominal Diameter 

A strong positive correlation exists between weight and 

abdominal diameter, with a Pearson correlation coefficient of 

0.87970 and a Spearman rank correlation coefficient of 

0.87491. This suggests that as weight increases, abdominal 

diameter also tends to increase.  

The correlation between these two variables is not 

surprising, as abdominal diameter measures central obesity, 

and weight is a direct measure of body mass. The strong 

positive correlation between weight and abdominal diameter 

suggests that individuals with higher weights are likely to have 

larger abdominal diameters and vice versa. 

4. Methodology  
The goal is to build a predictive model that accurately 

predicts fuel consumption based on the given dataset. A model 

building pipeline is built that iteratively adds and refines the 

regressors to achieve the best possible model.  

4.1. K-Fold Cross Validation 

The cross-validation technique measures the model against 

unseen data while dealing with a defined dataset. This helps 

avoid overfitting and gives an insight into behaving against 

unseen datasets. In general, 20% of data is set aside for final 

model validation, and the remaining 80% is set to undergo 

cross-validation.  

In a K-fold cross-validation method, one-fold is set aside 

for validation, and the remaining K-1 fold of data is used for 

training. Stratification (binning in regression) ensures that 

data in each fold is evenly distributed. In each iteration, the 

sum model is tested. The overall model’s performance is 

found by taking the average of the metrics, such as 𝑅2and 

MSE. [8] 

4.2. Logistic Regression 

Logistic regression is a statistical method to model the 

relationship between a binary response variable and one or 

more predictor variables. The logistic regression model is 

based on the logistic function, which maps the linear 

combination of the predictor variables to a probability 

between 0 and 1. The logistic regression model can be written 

as: 

𝑙𝑜𝑔 (
𝑝

1 − 𝑝
)  =  𝛽0  +  𝛽1𝑥1  +  … +  𝛽𝑛𝑥𝑛 

where 𝑝 is the probability of the positive class, 
𝑝

1−𝑝
 is 

called as the odds,  𝛽0 is the intercept, 𝛽1, … , 𝛽𝑛 are the 

coefficients of the predictor variables, and 𝑥1, … , 𝑥𝑛 are the 

predictor variables.  

4.3. Interpretation of the above Logistic Regression 

Equation 

The slope coefficients (𝛽) represent the change in the 

dependent variable for a one-unit change in the independent 

variable while holding all other independent variables 

constant. The intercept (𝛽0) represents the value of the 

dependent variable when all independent variables are equal 

to zero. The R-squared value represents the proportion of the 

variance in the dependent variable explained by the 

independent variables. 

4.4. Assumptions in Logistic Regression 

• Linearity: The relationship between the predictor 

variables and the log odds of the outcome should be 

continuous and without a break. This means that each 

predictor variable's effect on the outcome's log odds 

should be consistent across all levels of the other predictor 

variables. 

• Independence of observations: Each observation should 

be independent and distinct from the others. This means 

the observations should be randomly sampled and not 

correlated. 

• Homoscedasticity: The variance of the residuals should 

be consistent across all levels of the predictor variables. 

This means that the spread of the residuals should be the 

same for all levels of the predictor variables. 

• Normality of residuals: The residuals should be normally 

distributed with a mean of 0 and a constant variance. This 

means the residuals should follow a normal distribution 

with a mean of 0 and a constant variance. 

• No multicollinearity: The predictor variables should not 

be highly correlated with each other. This means the 

predictor variables should not be highly correlated, or the 

regression coefficients may be unstable. 

• No outliers: There should be no outliers in the data. 

Outliers can affect the model's fit and the predictions' 

accuracy. 

• No missing values: There should be no missing values in 

the data. More values can be needed to ensure the model's 

fit and the predictions' accuracy. 

4.5. Define Null Model 

The logistic regression null model assumes that the 

response variable's probability remains constant across all 

levels of the independent variables. This model predicts that 

the log-odds of the response variable are the same for all levels 

of the independent variables. In this model, the intercept term 

represents the log-odds of the response variable when all 

independent variables are equal to zero. The null model 

assumes no relationship between the independent and 

response variables. The null model serves as a reference point 

for testing the significance of the logistic regression 

coefficients. If the null model is rejected, it suggests that the 

independent variables significantly affect the 

responsevariable, and the null hypothesis of no relationship 
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can be rejected. Mathematically, the null model  is represented 

as: 

𝑙𝑜𝑔 (
𝑝

1−𝑝
) =  𝛽0    (1) 

Where: 

• 𝑝 is the probability of the response variable 

• 𝛽0 is the intercept or constant term 

• 𝑙𝑜𝑔 (
𝑝

1−𝑝
) is the log-odds of the response variable 

4.6. Define Base Model (with all variables) 

This step involves taking all variables in the dataset for 

regression. Specify the dependent variable (𝑦) and 

independent variables (𝑥1, 𝑥2, . . . , 𝑥𝑛).  

𝑦 =  𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛)     (2) 

4.7. On Hot Encoding 

One-hot encoding is a popular technique used in data 

preprocessing to convert categorical variables into a numerical 

format that machine learning algorithms can utilize. This 

process involves transforming each categorical variable into a 

binary vector, where each element in the vector represents a 

unique category value. By converting categorical variables 

into numerical values, one-hot encoding enables machine 

learning models to learn complex relationships between 

variables and make accurate predictions. This technique is 

particularly useful when dealing with categorical variables 

that have multiple distinct categories. 

4.8. Logistic Regression 

Logistic regression is a statistical method used to model 

the relationship between a binary response variable and one or 

more predictor variables. The logistic regression model is 

based on the logistic function, which maps the linear 

combination of the predictor variables to a probability 

between 0 and 1. The logistic regression model can be written 

as: 

𝑙𝑜𝑔 (
𝑝

1−𝑝
)  =  𝛽0  +  𝛽1𝑥1  +  … +  𝛽𝑛𝑥𝑛 (3) 

where 𝑝 is the probability of the positive class, 
𝑝

1−𝑝
 is 

called as the odds,  𝛽0 is the intercept, 𝛽1, … , 𝛽𝑛 are the 

coefficients of the predictor variables, and 𝑥1, … , 𝑥𝑛 are the 

predictor variables.  

4.9. Parameter Estimation  

Maximum Likelihood Estimation (MLE) is used to 

estimate the coefficients of the logistic regression equation. 

MLE is a widely used and well-established method for 

parameter estimation in logistic regression. It is particularly 

suitable for this analysis because it handles complex 

relationships between independent and dependent 

variables.Mathematically, for samples labeled as 1, the aim is 

to estimate 𝛽 such that the product of the probabilities p(x) is 

as close to 1 as possible. Similarly, for samples labeled as 0, 

the aim is to estimate 𝛽 such that the product of the 

probabilities is as close to 0 as possible, or equivalently, (1 −
 𝑝(𝑥)) is as close to 1 as possible.  

This intuition is mathematically represented as: 

𝐿(𝑦, 𝛽)  =  ∏[𝑝(𝑥)𝑦=1  ∗  (1 − 𝑝(𝑥))
𝑦=0

]  (4) 

where 𝑦 is the sample's label, and 𝑝(𝑥) is the probability 

of the sample given the input 𝑥.  

The log-likelihood function that is optimized is  

𝑙𝑛 𝐿 (𝒚, 𝜷) =  ∑ 𝑦𝑖𝑥𝑖
𝑛
𝑖=1 − ∑ 𝑙𝑛(1 + 𝑒𝒙𝒊𝜷)

𝑛

𝑖=1
  (5) 

This study uses the scikit-learn library's logistic 

regression method to estimate the model's parameters. 

4.10. Bootstrapping in Logistic Regression 

The bootstrap approach is a statistical technique used to 

assess the performance and uncertainty of a logistic regression 

model. It involves repeatedly sampling the original dataset 

with replacement, fitting a logistic regression model to each 

sample, and calculating the estimated coefficients and 

standard errors. By analyzing the distribution of these 

estimates, the bootstrap method can provide insights into the 

bias and variability of the model. This can be particularly 

useful in identifying potential issues with model overfitting or 

underfitting.  

The bootstrap method can be used to estimate the 

sampling distribution of the model's parameters, which can be 

used to calculate confidence intervals and perform hypothesis 

testing. In logistic regression, the bootstrap method can be 

used to estimate the bias and variability of the model by 

repeatedly fitting the model to the data with replacement and 

calculating the estimated coefficients and standard errors. The 

bootstrap method is a useful tool for assessing the uncertainty 

of a logistic regression model and can be used to evaluate the 

reliability of the model's predictions and results. 

4.11. Monte Carlo Simulation in Logistic Regression 

Logistic regression can be enhanced by incorporating 

Monte Carlo simulation, which generates many random 

samples from the probability distributions of the independent 

variables. This technique allows for estimating uncertainty in 

the model's coefficients and intercept, providing a more 

nuanced understanding of the model's performance.  

By simulating the variability of the data, Monte Carlo 

simulation can help identify potential biases and provide a 

more accurate representation of the relationships between 

variables. This added layer of sophistication can be 

particularly valuable in situations where the data is limited or 

where there are concerns about model fit or specification. 
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Algorithm in Detail 

Inputs: 

• Final Model coefficients:  𝛽 = ( 𝛽0, 𝛽1, 𝛽2, … . 𝛽𝑘) 

• Dataset: Observed variables 

• 𝑋 = {𝑥1, 𝑥2, … . , 𝑥𝑘}, 𝑦,  where: 𝑥𝑖 are predictors, and 𝑦 

is a binary outcome (𝑦 ∈  {0,1}) 

• Parameters: 𝑁𝑠𝑖𝑚 Number of simulations and 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is 

the number of samples per simulation 

• Regression formula: is the model structure to be re-fitted 

in each simulation 

Algorithm Steps: 

• Extract predictors 𝑋 = {𝑥1, 𝑥2, … . , 𝑥𝑘}, 𝑦, and outcome 

𝑦. 

• Define bounds for each predictor 𝑥𝑖, Calculate 𝑥𝑖,𝑚𝑖𝑛 =

min(𝑥𝑖) , 𝑥𝑖,𝑚𝑎𝑥 = max(𝑥𝑖)    

• Generate samples for predictor variables required for 

each simulation. 

• 𝑥𝑖,𝑠𝑖𝑚~𝑈(𝑥𝑖,𝑚𝑖𝑛 , 𝑥𝑖,𝑚𝑎𝑥), ∀𝑖  ∈ {1,2, … 𝑘} 

• Monte Carlo Simulation Loop: 

• For 𝑖 =  1,2, … . , 𝑁𝑠𝑖𝑚: 

• 𝑃(𝑦 = 1|𝑋𝑠𝑖𝑚) =
1

1+exp(−(𝛽0+∑ 𝛽𝑗𝑥𝑗,𝑠𝑖𝑚 𝑘
𝑗=1 )) 

  

• Draw 𝑦𝑠𝑖𝑚  from a binomial distribution 

• 𝑦𝑠𝑖𝑚 = ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝) 

• Define 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠𝑖𝑚  =  {𝑋𝑠𝑖𝑚, 𝑦𝑠𝑖𝑚} 

• �̂�(𝑖) = 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠𝑖𝑚)  

• Save �̂�(𝑖) and relevant metrices 

• Compute summary statistics across simulations, i.e. 

𝑀𝑒𝑎𝑛(�̂�𝑗) = 𝐸[�̂�𝑗], 𝑉𝑎𝑟(�̂�𝑗) = 𝑉𝑎𝑟[�̂�𝑗], ∀𝑖  ∈ {1,2, … 𝑘} 

4.12. Model Validation 

 The following model validation techniques were used to 

evaluate the performance of the logistic regression model and 

ensure that it generalizes well to new, unseen data. 

• Confusion Matrix: A table that summarizes the 

predictions made by the model against the actual true 

labels, allowing for the evaluation of accuracy, precision, 

and recall. 

• Area Under the ROC Curve (AUC-ROC): A metric that 

evaluates the model's ability to distinguish between 

positive and negative classes, with higher values 

indicating better performance. 

• Bootstrapping: A technique that involves resampling the 

data with replacement and evaluating the model's 

performance on each resampled dataset, allowing for the 

estimation of the model's variability and robustness. 

• Cross-Validation: A method that involves dividing the 

data into multiple subsets, training the model on each 

subset, and evaluating its performance on the remaining 

subsets, allowing for the evaluation of the model's 

performance on unseen data and prevention of overfitting. 

• Learning Curve: The learning curve plots the Mean 

Squared Error (MSE) or Root Mean Squared Error 

(RMSE) of the model against the number of observations, 

providing insights into the model's performance and 

ability to generalize to new data. Examining the learning 

curve can identify the optimal number of observations 

needed to achieve good performance and avoid 

overfitting or underfitting. 

5. Results 
Table 1. Models with Regressors 

Model Model Equation 

Null Model diabetic 

Base Model All parameters 

Model 1 

diabetic~ calories+sugar+bmi+ abdominal_diameter:overweight+ age+male+poverty_ratio_under_5+ 

glucose+Mexican_American+ Non_Hispanic_Asian+ Non_Hispanic_Black+ 

Non_Hispanic_White+Other_Hispanic 

Model 2 

diabetic~ calories+monounsaturated_fats+ potassium+saturated_fats+sugar 

+sodium+ cholesterol 

+diastolic_BP 

+systolic_BP+abdominal_diameter 

+bmi+height+weight+age+male 

+family_income_poverty_ratio +hdl_mg 

+lab_cholesterol+glucose +Mexican_American 

+Non_Hispanic_Asian +Non_Hispanic_Black+ Non_Hispanic_White+Other_Hispanic 

Model 3 

diabetic~ calories+sugar+bmi 

+abdominal_diameter:overweight+age+ 

male+poverty_ratio_under_5+glucose+ 

Mexican_American+Non_Hispanic_Asian 

+Non_Hispanic_Black 

+Non_Hispanic_White+Other_Hispanic 

Model 4 diabetic~ bmi+abdominal_diameter:overweight+ 
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age+male+poverty_ratio_under_5+ 

glucose+Mexican_American +Non_Hispanic_Asian +Non_Hispanic_Black 

+Non_Hispanic_White+Other_Hispanic 

Model 5 diabetic ~  BMI +  age + abdominal_diameter:glucose 

Table 2. Model performance statistics 

Model Error Rate % (Mean, Lo, Hi) Efron's 𝑹𝟐  (Mean, Lo, Hi) 

Null Model 9.8, 8.93, 10.61  

Base Model 9.39, 8.25, 10.14 0.19, 0.17, 0.28 

Model 1 8.85, 8.14, 10.10 0.26, 0.17, 0.29 

Model 2 7.40,6.75, 8.54 0.28, 0.23, 0.34 

Model 3 6.88,6.10, 7.55 0.39, 0.35, 0.44 

Model 4 6.86,6.13, 7.88 0.39,0.35, 0.44 

Model 5 6.75,6.20,7.74 0.39,0.34,0.45 

Table 3. Confusion matrix 

Class 

Predicted 

Without 

Diabetes 

Predicted 

with 

Diabetes 

Support 

Without 

Diabetes 
4282 52 4334 

With 

Diabetes 
291 188 479 

Table 4. Final model performance metrics 

Metric Value 

Precision 0.94/0.78 

Recall 0.99/0.39 

F1-score 0.96/0.52 

Accuracy 0.93 

Macro avg 0.86/0.69/0.74 

Table 5. Cross validation results 

Metric Mean Confidence Bounds 

Error 6.815 (4.04, 9.32) 

Efron's 𝑅2 0.39 (0.26, 0.52) 

Accuracy 0.932 (0.90, 0.95) 
 

 
Fig. 14 ROC curve 

 
Fig. 15 Distribution of estimated 𝜷𝟎 

 
Fig. 16 Distribution of estimated 𝜷𝟏 
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Fig. 17 Distribution of estimated 𝜷𝟐 

 
Fig. 18 Distribution of estimated 𝜷𝟑   

 
Fig. 19 Learning curve   

6. Discussion 
6.1. Model Analysis   

The analysis started with a model that included all the 

attributes. The model performance was evaluated using the 

following metrics: 

• Error rate: 9.41% (Mean: 9.39, Lo: 8.25, Hi: 10.14) 

• Efron's 𝑅2: 0.19 (Mean: 0.17, Lo: 0.17, Hi: 0.28) 

The results indicate that the model has a relatively low 

error rate, but the Efron's 𝑅2  value suggests that the model 

only explains a limited amount of the data variability. 

Additionally, many of the coefficients are zero, indicating that 

changes in these variables do not affect the probability of an 

individual being diabetic. The next model, with the 

elimination of variables that demonstrated low correlation 

with diabetes during the Exploratory Data Analysis (EDA) 

step and had coefficients of 0 in the previous result, showed 

up below metrices: 

• Error rate: 8.85% (Mean: 8.85, Lo: 8.14, Hi: 10.10) 

• Efron's 𝑅2: 0.26 (Mean: 0.17, Lo: 0.17, Hi: 0.29) 

More variables have a significant coefficient in the 

updated model, indicating that the model captures more of the 

underlying relationships in the data. The error rate has 

decreased to 8.77%, and Efron's R^2 has increased to 0.26, 

indicating better performance. However, despite these 

improvements, there may still be issues with multicollinearity 

in the model. It is, therefore, necessary to re-examine the 

cross-correlations between the variables to identify potential 

sources of multicollinearity and take steps to address them. 

With the knowledge from the EDA, it looks like the only 

extreme multicollinearity exists with the diet variables 

(calories, mono-unsaturated fats, potassium, saturated fats, 

sugar, sodium, and cholesterol) and the weight variables 

(overweight, BMI, weight and abdominal diameter), and 

therefore, interaction terms were introduced. The model 

performance is as follows, 

• Error rate: 7.40% (Mean: 7.40, Lo: 6.75, Hi: 8.54) 

• Efron's 𝑅2: 0.28 (Mean: 0.23, Lo: 0.23, Hi: 0.34)) 

Despite introducing interaction terms, the current model 

has not significantly improved, with only a 0.02 increase in 

R^2 and a 1% decrease in error rate. The calories and sugar 

variables are removed in the next model, as there is a 95% 

chance that their coefficients are 0. The next model tried out 

was by removing the calories and sugar variables. This model 

has shown significant improvement, with a 0.11 increase in 

R^2 and a 0.52 decrease in error rate. All coefficients except 

for BMI are non-zero, indicating a statistically significant 

relationship between the variables. However, the confidence 

intervals for BMI, male, and poverty ratio under 5 include 0, 

indicating a chance of no relationship between these variables 

and the outcome.  

• Error rate: 6.88% (Mean: 6.88, Lo: 6.10, Hi: 7.55) 

• Efron's 𝑅2: 0.39 (Mean: 0.35, Lo: 0.35, Hi: 0.44) 

The knowledge that diabetes affects blood sugar levels 

and that the main cause varies by type suggests a refinement 

of the model by incorporating only the health attributes and 

excluding the race and economic attributes. This approach 
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aims to improve the model's ability to capture the relationships 

between health attributes and outcomes. 

• Error rate: 6.86% (Mean: 6.86, Lo: 6.13, Hi: 7.88) 

• Efron's 𝑅2: 0.39 (Mean: 0.35, Lo: 0.35, Hi: 0.44) 

6.2. Final Model    

After conducting a few more evaluations of the model, it 

was decided to refine it further by removing a few regression 

parameters. This was done to reduce the error rate while 

maintaining the same or a better   𝑅2 . Through an exhaustive 

process of trial and error, it was identified that a subset of the 

original model with BMI, age, abdominal diameter, and 

glucose as interaction terms has the most accurate and 

effective model for predicting the likelihood of diabetes based 

on the input features. The error rate of 6.75% indicates that the 

model is accurate in predicting the likelihood of diabetes, and 

the value of 39 suggests that the model can explain a 

significant portion of the variance in the data. Based on the 

model results, the model is performing well in predicting the 

absence of diabetes. With high precision and recall values, the 

model is good at identifying individuals who do not have 

diabetes. However, the model is less accurate in predicting the 

presence of diabetes, with lower precision and recall. This 

suggests that the model may be missing some cases of diabetes 

or incorrectly identifying some individuals as having diabetes. 

The F1-score is a measure of the model's overall performance, 

and it considers both precision and recall. The F1-score for 

predicting the absence of diabetes is 0.96, indicating that the 

model is performing well in this task.  

However, the F1-score of 0.52 for predicting being 

diabetic suggests that the model is not performing as well in 

this task. The model's lower accuracy in predicting the 

presence of diabetes suggests that the data may be imbalanced, 

with more instances of being non diabetic than being diabetic. 

This imbalance in data may lead to the model being biased 

towards predicting the absence of diabetes. Another 

explanation is that the model may be lacking essential features 

or variables that are relevant to predicting the presence of 

diabetes. For example, the model may not consider certain 

demographic or lifestyle factors important for predicting 

diabetes. The null model results indicate a 95% chance that the 

proportion of people with diabetes falls within the range of 

8.9% to 10.6%. Without additional factors, a prediction that 

all people have not been diagnosed with diabetes would be 

incorrect 8.9% to 10.6% of the time. In contrast, the proposed 

model (Model 5) reduces the error rate to 6.15% and 7.49%, 

with a mean error of 6.75%. This represents an improvement 

of approximately 3 percentage points compared to the null 

model. Finally, the model's performance suggests that it is 

good at predicting not being diabetic, but it requires further 

improvement to predict the presence of diabetes accurately. 

Additional analysis and refinement of the model may be 

necessary to improve its performance in this area. Here is a 

more detailed explanation of how the model has achieved a 

better result. 

6.3. Cross Validation   

The error, Efron's 𝑅2, and accuracy metrics were 

estimated using 3 repetitions of 10-fold cross-validation. This 

allowed calculating each metric's mean, standard deviation, 

and confidence bounds. The results are as follows: These 

results provide a good estimate of the model's performance, 

with a mean error of 6.82%, a mean Efron's 𝑅2 of 38%, and a 

mean accuracy of 93.2%. The confidence bounds for each 

metric indicate the range of possible values for the true error 

rate, Efron's 𝑅2, and accuracy. 

6.4. ROC Curve 

The ROC curve, which plots the true positive rate against 

the false positive rate at different thresholds, was used to 

evaluate the performance of the logistic regression model. The 

resulting curve revealed a notable area under the curve (AUC) 

of 0.71, indicating a moderate level of accuracy in 

distinguishing between the positive and negative classes. This 

suggests that the model can effectively identify most true 

positives while minimizing the number of false positives. The 

AUC of 0.71 is particularly noteworthy, as it indicates that the 

model can accurately classify a significant proportion of the 

data while providing a relatively high degree of confidence in 

its predictions. Overall, the ROC curve provides valuable 

insights into the model's performance, and the AUC of 0.71 

suggests that the model is a useful tool for making predictions 

in this domain. 

6.5. Monte Carlo Simulation 

The Monte Carlo simulation was applied to the final 

model (Model 5) diabetes (diabetic ∼ BMI + age + 

abdominal_diameter × glucose) with 1000 simulations and 

each simulation with 100,000 samples. This involved 

generating 1000 synthetic datasets to assess the variability of 

the model’s coefficients. The results provided distributions for 

each coefficient, allowing for the calculation of means, 

variances, and confidence intervals. The large sample size 

ensured reliable estimates, and the aggregated results showed 

stable coefficients and consistent performance metrics, 

confirming the model's robustness across different scenarios. 

6.6. Learning Curve   

To evaluate the potential impact of additional data on 

model estimation, learning curves and the standard deviation 

(𝜎) were employed. Initially, when using a small proportion 

of the dataset, the difference in Mean Squared Error (MSE) 

between the training set and test set is substantial, reflecting 

the model's tendency to overfit the training data, leading to a 

phenomenon known as generalization error. As the proportion 

of the dataset used for training increases, the MSE on the 

training set also rises, which is expected given that the model 

is becoming more generalizable with more data to learn from. 

Conversely, the lines converge at the far right, indicating that 

further data acquisition would not enhance the model's 

performance with its current specifications. It is essential to 

note that this conclusion pertains specifically to this model, 
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including its hyperparameters and regularization techniques. 

If modifications are made to these components, additional data 

might be necessary to achieve improved performance. 

6.7. Quantifying the Implications to Healthcare  

The final logistic regression model (Model 5), with 

BMI, age, abdominal diameter, and glucose as the regressors, 

can significantly improve the Centers for Disease Control and 

Prevention's (CDC) ability to predict and prevent diabetes. 

The model is expected to target individuals with a BMI of 30 

or higher about prevention strategies as they would have a 

6.81% higher risk of developing diabetes. Additionally, the 

model's prediction that individuals with a history of glucose 

intolerance are at a 6.81% higher risk of developing diabetes 

can help healthcare providers develop personalized treatment 

plans. The model's ability to predict that individuals with 

engaged physical activities are at a 6.14% lower risk of 

developing diabetes can inform effective prevention 

strategies. In comparison, its prediction that individuals with 

a family history of diabetes are at a 6.88% higher risk of 

developing diabetes can enhance research and understanding 

of the causes and risk factors for diabetes. Using this model, 

the CDC can improve patient outcomes, reduce healthcare 

costs, and strengthen disease surveillance and prevention 

efforts. 

7. Future Work 
Future work includes several directions that were not 

explored in this study. Future research should explore the 

relationship between these risk factors and other diseases, 

such as cardiovascular disease, hypertension, and kidney 

disease. Additionally, future studies should investigate the 

impact of these risk factors on health outcomes, such as 

quality of life, health-related quality of life, and healthcare 

utilization. By addressing these limitations and exploring 

these directions, future research can further advance the 

understanding of the risk factors for diabetes and develop 

more effective and personalized approaches to preventing and 

managing the disease. To improve the model's performance, a 

range of techniques can be utilized, including assembling 

multiple models to reduce overfitting and improve 

generalizability, using regularization to encourage more 

straightforward solutions and prevent overfitting, exploring 

non-linear relationships between variables using techniques 

such as polynomial regression, splines, or neural networks, 

and handling imbalanced data by oversampling the minority 

class, under-sampling the majority class, or using class 

weights. Additionally, neural networks can capture complex 

patterns and relationships in the data, potentially improving 

accuracy and better predictive performance. Furthermore, 

other classification techniques, such as random forests, 

gradient boosting machines, and support vector machines, can 

be explored to improve the model's performance and 

adaptability to different data scenarios. Combining these 

techniques makes it possible to develop a more robust and 

accurate model that better predicts the risk of developing 

diabetes and can be used to inform personalized treatment 

plans. 

 

8. Conclusion  
The study presents a comprehensive analysis of the risk 

factors associated with developing diabetes using logistic 

regression and Exploratory Data Analysis (EDA). The 

findings suggest that a BMI of 30 or higher, a history of 

glucose intolerance, and a family history of diabetes are strong 

predictors of diabetes risk. Furthermore, regular physical 

activity is associated with a lower risk of developing diabetes. 

These results have significant implications for preventing and 

managing diabetes, emphasizing the need for targeted 

interventions and prevention strategies. The results have 

important implications for public health policy and practice. 

First, they highlight the importance of addressing the rising 

rates of obesity and physical inactivity, which are major 

contributors to the development of diabetes. Second, they 

underscore the need for targeted interventions and prevention 

strategies, such as lifestyle modification programs and 

medication therapy, to reduce the risk of developing diabetes.  

Finally, they emphasize the importance of family history 

in predicting diabetes risk, which has important implications 

for genetic counseling and screening. The final model, Model 

5, with BMI, age, abdominal diameter, and glucose, integrates 

these risk factors and provides a comprehensive framework 

for predicting diabetes risk. The model's ability to accurately 

classify patients as high or low risk highlights the importance 

of considering multiple risk factors in predicting diabetes risk. 

A learning curve analysis was done to evaluate the model 

performance, which showed that the model's accuracy 

improved as the number of observations increased. Using 

bootstrapping and Monte Carlo simulations to estimate the 

model's uncertainty, the model's performance was robust 

across different samples. The study also has implications for 

future research. Future research should continue to explore the 

relationship between these factors and diabetes risk and 

investigate the effectiveness of various prevention strategies. 

Additionally, future research should examine the potential 

interactive effects between these factors and diabetes risk to 

understand the complex relationships between these variables 

better.  In conclusion, the study provides new insights into the 

risk factors of developing diabetes. It highlights the 

importance of targeted interventions and prevention strategies 

to reduce the burden of this disease on individuals and society. 

By improving the understanding of the risk factors for 

diabetes, more effective and personalized approaches can be 

developed to prevent and manage this diabetic health 

condition. 
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Appendix 1 
Single Variable EDA Plots 
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Pair wise EDA Plots 
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